64.Kafka 的应用场景有哪些?
Kafka 的应用场景
1)消息队列
比起大多数的消息系统来说,Kafka 有更好的吞吐量,内置的分区,冗余及容错性,这让 Kafka 成为了一个很好的大规模消息处理应用的解决方案。消息系统一般吞吐量相对较低,但是需要更小的端到端延时,并常常依赖于 Kafka 提供的强大的持久性保障。在这个领域,Kafka 足以媲美传统消息系统,如 ActiveMQ 或 RabbitMQ 。
2)行为跟踪
Kafka 的另一个应用场景,是跟踪用户浏览页面、搜索及其他行为,以发布订阅的模式实时记录到对应的 Topic 里。那么这些结果被订阅者拿到后,就可以做进一步的实时处理,或实时监控,或放到 Hadoop / 离线数据仓库里处理。
3)元信息监控
作为操作记录的监控模块来使用,即汇集记录一些操作信息,可以理解为运维性质的数据监控吧。
4)日志收集
日志收集方面,其实开源产品有很多,包括 Scribe、Apache Flume 。很多人使用 Kafka 代替日志聚合(log aggregation)。日志聚合一般来说是从服务器上收集日志文件,然后放到一个集中的位置(文件服务器或 HDFS)进行处理。
然而, Kafka 忽略掉文件的细节,将其更清晰地抽象成一个个日志或事件的消息流。这就让 Kafka 处理过程延迟更低,更容易支持多数据源和分布式数据处理。比起以日志为中心的系统比如 Scribe 或者 Flume 来说,Kafka 提供同样高效的性能和因为复制导致的更高的耐用性保证,以及更低的端到端延迟。
5)流处理
这个场景可能比较多,也很好理解。保存收集流数据,以提供之后对接的 Storm 或其他流式计算框架进行处理。很多用户会将那些从原始 Topic 来的数据进行阶段性处理,汇总,扩充或者以其他的方式转换到新的 Topic 下再继续后面的处理。
例如一个文章推荐的处理流程,可能是先从 RSS 数据源中抓取文章的内容,然后将其丢入一个叫做“文章”的 Topic 中。后续操作可能是需要对这个内容进行清理,比如回复正常数据或者删除重复数据,最后再将内容匹配的结果返还给用户。这就在一个独立的 Topic 之外,产生了一系列的实时数据处理的流程。Strom 和 Samza 是非常著名的实现这种类型数据转换的框架。
6)事件源
事件源,是一种应用程序设计的方式。该方式的状态转移被记录为按时间顺序排序的记录序列。Kafka 可以存储大量的日志数据,这使得它成为一个对这种方式的应用来说绝佳的后台。比如动态汇总(News feed)。
7)持久性日志(Commit Log)
Kafka 可以为一种外部的持久性日志的分布式系统提供服务。这种日志可以在节点间备份数据,并为故障节点数据回复提供一种重新同步的机制。Kafka 中日志压缩功能为这种用法提供了条件。在这种用法中,Kafka 类似于 Apache BookKeeper 项目。