讲一讲 GMP 模型
答案1:
三个字母的含义
G(Goroutine)
:G 就是我们所说的 Go 语言中的协程 Goroutine 的缩写,相当于操作系统中的进程控制块。其中存着 goroutine 的运行时栈信息,CPU 的一些寄存器的值以及执行的函数指令等。M(Machine)
:代表一个操作系统的主线程,对内核级线程的封装,数量对应真实的 CPU 数。一个 M 直接关联一个 os 内核线程,用于执行 G。M 会优先从关联的 P 的本地队列中直接获取待执行的 G。M 保存了 M 自身使用的栈信息、当前正在 M上执行的 G 信息、与之绑定的 P 信息。P(Processor)
:Processor 代表了 M 所需的上下文环境,代表 M 运行 G 所需要的资源。是处理用户级代码逻辑的处理器,可以将其看作一个局部调度器使 go 代码在一个线程上跑。当 P 有任务时,就需要创建或者唤醒一个系统线程来执行它队列里的任务,所以 P 和 M 是相互绑定的。总的来说,P 可以根据实际情况开启协程去工作,它包含了运行 goroutine 的资源,如果线程想运行 goroutine,必须先获取 P,P 中还包含了可运行的 G 队列。
源码
- G
type g struct {
stack stack // 描述真实的栈内存,包括上下界
m *m // 当前的 m
sched gobuf // goroutine 切换时,用于保存 g 的上下文
param unsafe.Pointer // 用于传递参数,睡眠时其他 goroutine 可以设置 param,唤醒时该goroutine可以获取
atomicstatus uint32
stackLock uint32
goid int64 // goroutine 的 ID
waitsince int64 // g 被阻塞的大体时间
lockedm *m // G 被锁定只在这个 m 上运行
}
其中 sched 比较重要,该字段保存了 goroutine 的上下文。goroutine 切换的时候不同于线程有 OS 来负责这部分数据,而是由一个 gobuf 结构体来保存,gobuf 的结构如下:
type gobuf struct {
sp uintptr
pc uintptr
g guintptr
ctxt unsafe.Pointer
ret sys.Uintreg
lr uintptr
bp uintptr // for GOEXPERIMENT=framepointer
}
这里可以看出该结构体保存了当前的栈指针,计数器,还有 g 自身,这里记录自身 g 的指针的目的是为了能快速的访问到 goroutine 中的信息。
- M
type m struct {
g0 *g // 带有调度栈的goroutine
gsignal *g // 处理信号的goroutine
tls [6]uintptr // thread-local storage
mstartfn func()
curg *g // 当前运行的goroutine
caughtsig guintptr
p puintptr // 关联p和执行的go代码
nextp puintptr
id int32
mallocing int32 // 状态
spinning bool // m是否out of work
blocked bool // m是否被阻塞
inwb bool // m是否在执行写屏蔽
printlock int8
incgo bool
fastrand uint32
ncgocall uint64 // cgo调用的总数
ncgo int32 // 当前cgo调用的数目
park note
alllink *m // 用于链接allm
schedlink muintptr
mcache *mcache // 当前m的内存缓存
lockedg *g // 锁定g在当前m上执行,而不会切换到其他m
createstack [32]uintptr // thread创建的栈
}
结构体 M 中,有两个重要的字段:
- curg:代表结构体M当前绑定的结构体 G 。
- g0 :是带有调度栈的 goroutine,普通的 goroutine 的栈是在堆上分配的可增长的栈,但是 g0 的栈是 M 对应的线程的栈。与调度相关的代码,会先切换到该 goroutine 的栈中再执行。
- P
type p struct {
lock mutex
id int32
status uint32 // 状态,可以为pidle/prunning/...
link puintptr
schedtick uint32 // 每调度一次加1
syscalltick uint32 // 每一次系统调用加1
sysmontick sysmontick
m muintptr // 回链到关联的m
mcache *mcache
racectx uintptr
goidcache uint64 // goroutine的ID的缓存
goidcacheend uint64
// 可运行的goroutine的队列
runqhead uint32
runqtail uint32
runq [256]guintptr
runnext guintptr // 下一个运行的g
sudogcache []*sudog
sudogbuf [128]*sudog
palloc persistentAlloc // per-P to avoid mutex
pad [sys.CacheLineSize]byte
}
- P 的个数就是 GOMAXPROCS(最大256),启动时固定的,一般不修改;GOMAXPOCS 默认值是当前电脑的核心数,单核CPU就只能设置为1,如果设置>1,在 GOMAXPOCS 函数中也会被修改为1。
- M 的个数和P 的个数不一定一样多(会有休眠的M或者不需要太多的 M)(M 最大10000);
- 每一个 P 保存着本地 G 任务队列,也有一个全局 G 任务队列。
模型介绍
本地队列:存放等待运行的 G,一个本地队列存放的G数量一般不超过 256 个,优先将新创建的 G 放在 P 的本地队列中,如果满了会放在全局队列中。
全局队列:存放等待运行的 G,读写要加锁,所以拿取效率在多线程竞争的情况下相比于本地队列来说要低。
面试回答模板
首先呢,GMP 这三个字母的含义分别是 Goroutine,Machine,Processor。这个Goroutine,相当于操作系统中的进程控制块。其中存着 goroutine 的运行时栈信息,CPU 的一些寄存器的值以及执行的函数指令等。Machine就是代表了一个操作系统的主线。M 结构体中,保存了 M 自身使用的栈信息、当前正在 M上执行的 G 信息、与之绑定的 P 信息。M 直接关联一个 os 内核线程,用于执行 G。(这里思考一个这个模型的图片回答),这个 M 做的事情就是从关联的 P 的本地队列中直接获取待执行的 G。剩下的 Processor 是代表了 M 所需的上下文环境,代表 M 运行 G 所需要的资源。当 P 有任务时,就需要创建或者唤醒一个系统线程来执行它队列里的任务。在GMP调度模型中,P 的个数就是 GOMAXPROCS,是可以手动设置的,但一般不修改,GOMAXPOCS 默认值是当前电脑的核心数,单核CPU就只能设置为1,如果设置>1,在 GOMAXPOCS 函数中也会被修改为1。总的来说,这个 P 结构体的主要的任务就是可以根据实际情况开启协程去工作。