📑 题目:63. 不同路径 II

🚀 本题 LeetCode 传送门

题目大意

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

解题思路

  • 这一题是第 62 题的加强版。也是一道考察 DP 的简单题。
  • 这一题比第 62 题增加的条件是地图中会出现障碍物,障碍物的处理方法是 dp[i][j]=0
  • 需要注意的一种情况是,起点就是障碍物,那么这种情况直接输出 0 。

代码

  1. package leetcode
  2. func uniquePathsWithObstacles(obstacleGrid [][]int) int {
  3. if len(obstacleGrid) == 0 || obstacleGrid[0][0] == 1 {
  4. return 0
  5. }
  6. m, n := len(obstacleGrid), len(obstacleGrid[0])
  7. dp := make([][]int, m)
  8. for i := 0; i < m; i++ {
  9. dp[i] = make([]int, n)
  10. }
  11. dp[0][0] = 1
  12. for i := 1; i < n; i++ {
  13. if dp[0][i-1] != 0 && obstacleGrid[0][i] != 1 {
  14. dp[0][i] = 1
  15. }
  16. }
  17. for i := 1; i < m; i++ {
  18. if dp[i-1][0] != 0 && obstacleGrid[i][0] != 1 {
  19. dp[i][0] = 1
  20. }
  21. }
  22. for i := 1; i < m; i++ {
  23. for j := 1; j < n; j++ {
  24. if obstacleGrid[i][j] != 1 {
  25. dp[i][j] = dp[i-1][j] + dp[i][j-1]
  26. }
  27. }
  28. }
  29. return dp[m-1][n-1]
  30. }